TPMS technology with no errors

The history links the Firestone recall from the late 1990s to more than 100 deaths in the US.  The TREAD Act mandated the use of a suitable tire pressure monitoring system (TPMS) technology for all light motor vehicles. 

In the US, the act affects all vehicles sold after September 1, 2007.

As of November 2012, all new passenger car models (M1) released in the European Union must be equipped with a TPMS. From November 2014, all new passenger cars sold in the European Union must be equipped with TPMS.

AROBS Approach

Our customer produces and distributes TPMS technology at a large scale. It faced a shortage of qualified specialists to develop the software component. 

It also patented a software solution that can identify and record (learn) the ID of the car’s tires using information directly from the ABS sensor.

The tires are fitted with inexpensive and robust sensors. They replaced the expensive antennas that had been previously used.  These antennas were not only costly but also prone to destruction at any repair that required tire removal.

Diagnosis gives the vehicle owner or a repair technician access to state of health information for various vehicle sub-systems.

Through diagnosis Data Trouble Code (DTC) errors are detected, validated and recorded in the Electronic Control Unit (ECU) memory.

The AROBS team managed around 30 such errors, such as under-voltage and over-voltage for the entire car system, ECU internal failures, invalid wheel (this can suggest a sensor malfunction, among others), communication protocol (CAN) errors, etc. The moment at which an error is identified is recorded, both as mileage spent and as date and time, up to seconds.

When a car owner visits the car service station for a check, the mechanic runs some tests using diagnosis services. The diagnosis will use the previously recorded DTC information, routines, and other services to read various data, such as the vehicle identification number.

Some of this data is provided by the diagnosis services implemented by the AROBS specialists Those include, among others, reading information on errors saved at the diagnosis stage and reading data about the car (e.g. car ID, the version of the software installed in the car, the car calibration parameters, etc.).

Business challenges:

Integrating third party components in an already high complexity system was the main hurdle of the project, since each of these components has unique communication and functional  characteristics. We invested intensive research effort, through hundreds of pages of dense technical documentation.

Our engineers overcomed the difficulties,  each word of the documentation could provide key answers, attention to even the tiniest detail proved crucial.  AROBS engineers solved 95% of all the integration related issues, without any support from the customer.

The second challenge was to optimize the system from the very beginning, to the extent that only minor lab and on the road testing were required to convert the alpha version of the solution into the final, defect-free product.

To achieve this goal we made sure the memory did not get fragmented and written more or more often than necessary. Based on historic data, errors have been grouped according to the frequency with which they occur and different groups were allocated different parts of the memory. This optimized the memory usage and the speed of the entire system.

Benefits and impact:

Lab system, integration and live testing have been performed with excellent results. The system is reliable, providing all the programmed notifications on the car’s display (e.g. wheels are functional, low wheel pressure, missing wheel, etc.).

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.